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A B S T R A C T   

The analysis of influence flow is crucial for the topological characterization of functional brain efficiency net-
works. Directional interaction among areal BOLD signals can be modeled by the causality method. Despite being 
widely used for studying Alzheimer’s Disease in the brain, the Granger Causality (GC) has been shown to be 
unable to reveal true causality relationships through mathematical proof and simulation in EEG experiments. To 
evaluate its effectiveness in fMRI studies, first, we integrated a novel causality method called the New Causality 
(NC) with fMRI data. Both strong and weak causal impacts between stochastic processes were simulated and 
tested by GC and NC methods. Additionally, 1,893 patients in different stages of progression toward Alzheimer s 
disease were acquired and analyzed through the causality-based connectivity study. Finally, machine learning 
was employed to explore the performance in classification under these two methods. Simulation results show 
that compared to the GC, the NC method is more sensitive and reasonable to address causality relationships, 
especially for those weak causal impacts. Both the brain efficiency network and the classification performance 
can be enhanced through the NC introduction. Furthermore, it provides additional evidence supporting the 
critical involvement of the middle insular cortex, along with the temporal, parietal, and frontal lobes, in con-
sciousness and functional diversion, with the help of NC integration.   

1. Introduction 

As the global population ages, millions of elderly individuals are 
experiencing varying degrees of decline in cognitive capabilities. 
Approximately 60–70 % of these cases deteriorate into Alzheimer’s 
Disease (AD), which has significant physical, psychological, and social 
impacts on both patients and their families, as well as on society as a 
whole. Despite numerous hypotheses [1–3] proposed from the fields of 
neuroscience, genomics, and psychology for pathological research on 
AD, there is currently no effective way to intervene and treat the disease. 
For all that, it is highly possible to make early predictions for AD, as 
structural and functional alterations in the human brain have been 
widely found at the early stage of cognitive impairment onset. To 
conduct multimodal and longitudinal research for AD patients, thou-
sands of subjects have been collected with clinical, imaging, genetic, and 
biochemical biomarkers data by the Alzheimer‘s Disease Neuroimaging 
Initiative (ADNI) decades ago. Different stages of mild cognitive 
impairment (MCI) have been grouped into the early MCI (EMCI), the late 

MCI (LMCI), the AD, and the health control (HC) according to their 
assessments in kinds of neuropsychological examinations [4]. 

Accurately predicting the early stages of AD is one of the greatest 
challenges in the world, and most studies have achieved superior 
recognition performance for binary classification. Rallabandi et al. [5] 
proposed an automated deep learning model based on the MRI and PET 
imaging modalities and achieved accuracies of 95.3 %, 94.1 %, and 96.2 
% in classifying HC vs MCI, MCI vs AD, and AD vs HC respectively. Chai 
et al. [6] recruited 79 volunteers (40 MCI patients and 39 HC), extracted 
68 features from the EEG signals, and designed an SVM model with a 
96.3 % classification result. However, despite these efforts, multi-group 
classification for the refined groups of EMCI, LMCI, AD, and HC has not 
yet achieved the same level of performance as binary classification. 
Amoroso et al. [7] reported an accuracy of 38.8 % for the recognition of 
four classes with a random forest-based deep neural network. Sheng 
et al. [8] proposed a concept of ordered core features to reveal the 
functionality in the brain under two specifically progressive relation-
ships, and an accuracy of 53.3 % was got in the four-group recognition 
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for HC, EMCI, LMCI, and AD against the baseline of 25 %. The low level 
of multi-group classification poses challenges for clinical diagnosis and 
early prediction of AD, and is typically hindered by two factors. First, the 
small number of available AD samples for machine learning. Compared 
to other successful domains engaging in artificial intelligence possessing 
massive amounts of data, AD-related AI models cannot be fully trained 
with the limited dataset in which situation it is inevitable to cause 
overfitting. Second, inappropriate feature engineering makes the model 
performance worse and inaccurate AD-related descriptions have few 
effects on model fitting. 

Extensive connectivity studies have been conducted on the brain to 
investigate Alzheimer’s pathology. Research [9] shows that functional 
alterations occur decades earlier than morphological changes which 
often present in the late stages of cognitive impairment. Connectivity is 
defined as the functional interactions among different areas of the brain, 
which can be evaluated by the EEG [10,11], DTI [12], or fMRI signals. 
As a result, more research is integrating connectivity-driven features 
into deep learning and conducting topological analysis of the brain, 
rather than solely observing structural characteristics such as volume 
atrophy in specific subregions [13,14]. Yu et al. [15] computed the 
global and local efficiency, the clustering coefficient and the between-
ness centrality as topological features, and trained a TSK fuzzy machine 
learning model for AD identification with the highest accuracy of 97.3 
%. 

Previously, we explored the correlation-based connectivity within 
the fMRI BOLD signals and generated the connectivity matrix for each 
brain area. A novel joint HCPMMP method [16] was proposed to register 
the non-HCP standard ADNI MRI/fMRI data into 360 HCPMMP areas. 
The refined parcellation helped to observe subtle changes among the 
multimodal brain regions and to quantitatively measure the connectiv-
ity relationships. Followed by the analysis of topological variability, a 
vector of 5,414 features was set up to train a supervised learning model 
[8]. A distinct banding area was found which significantly differs in the 
cognitive impairment groups. Lately [17], by comparison to various 
cortex parcellation methods, the HCPMMP was further confirmed its 
effectiveness in modeling the connectivity, and weightings for each areal 
connectivity feature were established to describe the AD and its pro-
dromal stages. However, correlation-based connectivity cannot depict 
the influence flow between brain areas, and the missing impact direction 
brings difficulty in the instruction of model tuning and explanation of 
the underlying functionality mechanisms in respect of brain working. 

For this reason, the causality method is referred [18] to analyze the 
influence direction among brain areas, and differs from the correlation- 
based connectivity matrix, the causality-based matrix is termed as the 
effective network or brain efficiency. In literatures [19–22], the Granger 
causality (GC) is widely employed to measure the degree of interplay 
between time series. It is a statistical hypothesis test for determining 
whether one variable s past values contribute to predicting another. GC 
originated from the field of economics and was first introduced by Clive 
Granger in 1969 [23]. Over the past decades, the method has been 
extended to many domains such as the study of meteorology [24], so-
ciology [25], and especially neuroscience. Caroline et al. [26] studied 
the classification performance for AD and schizophrenia patients with 
constructing the matrix of connections by using Granger causality, 
Pearson’s and Spearman’s correlations, and achieved higher than 0.9 
scores of area under the ROC curve (AUC). Although it is widely used, 
recent studies [27,28] have pointed out that GC is unable to demonstrate 
the true causality through mathematical proof and simulation with the 
EEG experiments. To enhance the causality-based connectivity matrix 
and reveal the areal influence flow alterations among different stages of 
progression toward Alzheimer s disease, we integrated a novel causality 
definition with the fMRI BOLD signals, simulated the strong or weak 
causal influence between time series, and applied this method into the 
feature engineering of AD-related machine learning. 

2. Method 

2.1. Enhanced brain efficiency network 

An enhanced brain efficiency network is introduced in this study. 
Generally, the efficiency is defined as the directional interaction of 
regional biological signals in the brain, which can be analyzed by cau-
sality modeling methods for time series [29]. Considering the following 
auto-regressive models in Eq. (1) in which X1 and X2 are stochastic 
processes that only accumulate values from their own past with white 
Gaussian noise ε that uncorrelated over time. t is for time, W is the co-
efficient that can be solved by the Least Square Method, and m corre-
sponds to the maximum lagging term which can be determined by AIC 
criterion. Variance can be computed for ε1 or ε2 after fitting the co-
efficients W, and labeled as Σ. 
⎧
⎪⎪⎨

⎪⎪⎩

X1(t) =
∑n=m

n=1
W1,nX1(t − n) + ε1

X2(t) =
∑n=m

n=1
W2,nX2(t − n) + ε2

(1) 

The causality relationship can be mathematically built in a joint- 
regression model in Eq. (2), and the variance Γ for error term η can 
also be computed by solving the optimal weightings. η1 and η2 have zero 
means. In the definition of Granger Causality [30], the causal impact is 
measured by the ln ratio between Σ and Γ. If the value of Γ is equal to Σ, 
it means that the introduction of X2 does not help improve the prediction 
accuracy of X1, and the time series are independent. On the other hand, 
if the value of Γ is smaller than Σ, it means the joint of X2 has a positive 
effect on improving the fitting of time series X1. 
⎧
⎪⎪⎨

⎪⎪⎩

X1(t) =
∑n=m

n=1
W11,nX1(t − n) +

∑n=m

n=1
W12,nX2(t − n) + η1

X2(t) =
∑n=m

n=1
W21,nX1(t − n) +

∑n=m

n=1
W22,nX2(t − n) + η2

(2) 

However, the above variance can only be measured by the difference 
between the fitting and the ground-truth value. Hu et al. [27] pointed 
the GC definition has its inherent shortcomings and/or limitations to 
illustrate the real strength of causality. A proportion-based causality 
named New Causality (NC) [28] was proposed to enhance the causality 
analysis capability for stochastic processes. Eq. (3) is the multivariate 
formulation generalized from the binary time series in Eq. (2). The small 
n is the total number of variables. In Eq. (4), NCXi→Xk is defined as the NC 
value from stochastic process Xi to Xk, N is the total length of observa-
tions, m is the lagging term computed by AIC criterion. In this study, 
only two time series of the simulated BOLD signals and the in-vivo fMRI 
data were considered. Thus, Eq. (4) can be simplified as Eq. (5). 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1,t =
∑m

j=1
a11,jX1,t− j + ⋯ +

∑m

j=1
a1i,jXi,t− j + ⋯

+
∑m

j=1
a1n,jXn,t− j + η1,t

X2,t =
∑m

j=1
a21,jX1,t− j + ⋯ +

∑m

j=1
a2i,jXi,t− j + ⋯

+
∑m

j=1
a2n,jXn,t− j + η2,t

.

.

.

X(k− m+1),t =
∑m

j=1
a(k− m+1,1),jX1,t− j + ⋯ +

∑m

j=1
a(k− m+1,i),jXi,t− j + ⋯

+
∑m

j=1
a(k− m+1,n),jXn,t− j + ηk− m+1,t

.

.

.

Xk,t =
∑m

j=1
ak1,jX1,t− j + ⋯ +

∑m

j=1
aki,jXi,t− j + ⋯ +

∑m

j=1
akn,jXn,t− j + ηk,t

.

.

.

Xn,t =
∑m

j=1
an1,jX1,t− j + ⋯ +

∑m

j=1
ani,jXi,t− j + ⋯ +

∑m

j=1
ann,jXn,t− j + ηn,t

(3)  

NCXi→Xk =

∑N
t=m(

∑m
j=1aki,jXi,t− j)

2

∑n
h=1

∑N
t=m(

∑m
j=1akh,jXh,t− j)

2
+
∑N

t=mη2
k,t

(4)  

NCX1→X2 =

∑N
t=m(

∑m
j=1a21,jX1,t− j)

2

∑N
t=m(

∑m
j=1a21,jX1,t− j)

2
+
∑N

t=m(
∑m

j=1a22,jX2,t− j)
2
+
∑N

t=mη2
2,t

(5) 

Hu et al. demonstrated the effectiveness of the NC method and 
applied it in the domain of EEG analysis. But for the fMRI data, the time 
resolution is not as good as EEG technology and is always accompanied 
by a large amount of sampling noise. Despite this, the excellent spatial 
accuracy of fMRI makes it one of the most successful brain imaging 
techniques. It is promising to extend the NC method to fMRI data and 
further enhance the brain efficiency network definition. 

2.2. Simulation 

To examine the effectiveness of NC-based brain efficiency network in 
fMRI data, two causal-related stochastic processes were simulated in this 
study. First, both strong and weak causality relationships were modeled 
in Eq. (6)–(7). X(t) was defined in an auto-regression model and only 
correlated to itself past value with a large coefficient 0.9 plus a noise 
term η1. In Eq. (6), time series Y was modulated by a strong causal 
impact from X compared to the past value of Y itself. While in Eq. (7), 
causal effects from Y itself exceeded the X factor 10 times. A is the co-
efficient which ranges from 0.01 to 0.1. Implemented in Matlab VARM 
function, the total time step in X and Y was set to 10 s. 

StrongCausality =

{
X(t) = 0.9X(t − 1) + η1

Y(t) = AX(t − 1) + (0.1A)Y(t − 1) + η2
(6)  

WeakCausality =

{
X(t) = 0.9X(t − 1) + η1

Y(t) = (0.1A)X(t − 1) + AY(t − 1) + η2
(7) 

To simulate the BOLD signal, a canonical Hemodynamic Response 
Function with TR = 100 ms implemented in SPM toolbox (https://www. 
fil.ion.ucl.ac.uk/spm/) was convolved with X and Y as Alard Roebroeck 
et al. [31] suggested. Subsequently, these simulated BOLD responses 
were further down sampled every TR to simulate signal acquisition by 
the scanner. After normalization, these signals were added with 20 % 
white Gaussian noise to represent measurement error and noise in the 
acquisition. The whole simulation process was repeated hundreds of 

times. Both NC and GC causality methods were evaluated for these 
simulated BOLD signals. 

2.3. In-vivo fMRI analysis 

2.3.1. Sample preparation 
To extend the NC method to fMRI analysis, different cognitive 

impairment and AD patients were acquired from the ADNI database. 
Table 1 lists the demographic and clinical characteristics of the samples 
used in this study. 597 patients for EMCI, 441 patients for LMCI, 266 
patients for AD, and 589 for health control were downloaded. The im-
aging protocols for the structural MRI were as follows: Matrix X = 256.0 
pixels, Matrix Y = 256.0 pixels; Matrix Z = 170.0; Pixel Spacing X = 1.0 
mm; Pixel Spacing Y = 1.0 mm; Pulse Sequence = GR; Slice Thickness =
1.2 mm; TE = 3.2 ms; TI = 0.0 ms; TR = 6.8 ms; Weighting = T1. For the 
resting-state fMRI data, Matrix X = 64.0 pixels; Matrix Y = 64.0 pixels; 
Pixel Spacing X = 3.3 mm; Pixel Spacing Y = 3.3 mm; Pulse Sequence =
GR; Slices = 6720.0; Slice Thickness = 3.3 mm; TE = 30.0 ms; TR =
3000.0 ms. 

2.3.2. Brain parcellation 
The HCP MMP cortex parcellation method [32] was employed in this 

study. There are 180 multi-modal cortical areas defined in each hemi-
sphere respectively. It is considered one of the most fine-grained cortex 
parcellation up to date, which is driven by four kinds of modalities 
including morphology, functionality, topology, and connectivity. Due to 
its strict requirements for MRI/fMRI protocols, the J-HCPMMP [16] and 
DBCP [33] methods (http://dbcp.cuz.edu.cn/) were used to achieve 
cortex parcellation for the ADNI which held with lower imaging reso-
lution than HCP and without T2w data. Specifically, these non-HCP data 
were passed to FreeSurfer [34] (https://surfer.nmr.mgh.harvard.edu/) 
and fMRIprep [35] (https://fmriprep.org/en/stable/) pipelines for their 
structural and functional preprocessing including slice timing, motion 
correction, artifact detection, co-registration, normalization, segmen-
tation, and smoothing and so on. Subsequently, the registered MRI and 
fMRI data would be handled by CIFTIFY pipeline [36] (https://edickie. 
github.io/ciftify/) to map the T1w structure space into CIFTI space and 
down-sampled the gray-ordinates vertices into 32 K. The 180 HCP MMP 
areas were delineated in these cortical 32,492 vertices per hemisphere in 
which parcellated BOLD signals could be extracted through HCP 
wb_command CIFTI-PARCELLATE [37] (https://www.humanconnect 
ome.org). 

2.3.3. Effective network evaluation 
The effective network was evaluated using both NC and GC methods 

based on these parcellated BOLD signals. The time series from each 

Table 1 
Demographic and Clinical Characteristics.   

HC EMCI LMCI AD 

Total Number 589 597 441 266 
Male/Female 282/307 338/259 225/216 149/117 
Age 72.08 ±

11.91 
70.26 ±
8.79 

69.26 ±
13.17 

73.52 ±
10.97 

Education 
Years 

16.13 ± 3.25 16.17 ±
2.94 

16.54 ± 3.58 15.57 ± 3.00 

CDR 0.04 ± 0.14 0.46 ± 0.19 0.56 ± 0.36 0.89 ± 0.41 
MMSE 28.89 ± 1.88 28.09 ±

2.21 
26.63 ± 3.43 21.59 ± 3.71 

NPI 1.48 ± 4.63 4.10 ± 7.04 5.55 ± 8.93 7.88 ± 9.81 
GDS 0.76 ± 1.24 1.89 ± 1.87 1.86 ± 2.04 1.72 ± 1.70 
FAQ 0.27 ± 1.35 2.60 ± 4.22 5.31 ± 6.93 14.89 ± 7.69 
ADAS 8.59 ± 4.95 12.27 ±

6.71 
19.09 ±
10.79 

33.01 ±
11.10 

CDR: Cognitive Dementia Rating. MMSE: Mini-Mental State Examination. NPI: 
Neuropsychiatric Inventory. GDS: Geriatric Depression Scale. FAQ: Functional 
Activities Questionnaire. ADAS: Alzheimer’s Disease Assessment Scale. 
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cortical area were first scaled to the range of (0,1). Then, two BOLD 
signals were iteratively chosen from mutually exclusive brain regions. 
One signal was designated as the independent variable X, while the 
other signal was designated as the dependent variable Y. Repeating this 
process resulted in 129,000 directional causality values, 
nAreai→Areak ,wherei,k∈(1,360) for each of the 1,893 ADNI subjects, which pro-
duced a total 200 million causality values represented in size of 360 ×
360 effective networks. Finally, Kruskal-Wallis, ANOVA, and Post Hoc 
tests were conducted to determine which directional causality values 
were significantly different among the four groups. These causality 
values were then used as input features for machine learning. 

2.3.4. Machine learning 
Several machine learning algorithms including the support machine 

learning (SVM), factorization machine (FM), K-nearest neighbors 
(KNN), and the unsupervised K-means method were tested to reduce 
model bias and to examine the discriminative capability of significant 
directional causality values located in paired cortex regions. The dataset 
was split into training, validation, and testing sets in a ratio of 
0.6:0.2:0.2. To avoid overfitting, a four-fold cross-validation was used. 
The training and validation sets were divided into four equal sub-
samples. Then, a four-step iteration was carried out. In each step, a 
single subsample of the four subsamples retained as the validation data 
for testing the model, and the remaining three subsamples are used as 
training data. To ensure comprehensive evaluation of the model’s per-
formance, this four-step iteration was repeated four times, with each of 
the four subsamples used exactly once as the validation data. This 
approach allowed both the training and validation sets to be used four 
times, while the testing set was used only once to estimate the model’s 
final performance. Classification performance was evaluated by a binary 
group confusion matrix. Accuracy, precision, sensitivity, and specificity 
were calculated using the Scikit-learn toolbox (https://scikit-learn.or 
g/stable/). 

3. Results 

Fig. 1 displays the overall workflow of this study. The upper left row 
illustrates the generation of the simulated fMRI BOLD signal, while the 
bottom row shows the preprocessing procedure for the ADNI data. The 
right panel depicts the efficiency analysis performed using both the NC 
and GC methods for both the simulated and in-vivo fMRI data. 

Fig. 2 shows the whole simulation process in which an auto- 
regression time series X (A1-E1, in green) and the corresponding caus-
ally affected joint-regression time series Y (A2-E2, in purple) are 
generated. Lines in Fig. 2A are the original time series created by the 
Matlab VARM function. The autoregression coefficients and associated 

lags computed by the AUTOCORR method are drawn in red points in 
Fig. 2B. Obvious declining autocorrelation trend can be observed for 
series X, while only one significant autocorrelated point (Fig. 2B, Lag =
1) in Y can be obtained due to their mathematical definitions. Both X and 
Y are convolved with the canonical HRF function (Fig. 2C), down-
sampled (Fig. 2D), and added with 20 % Gaussian noise (Fig. 2E). 

Fig. 3 illustrates the causal impact from time series X to Y, repre-
sented for both strong (left) and weak (right) causal relationships. The 
simulation function of MATLAB was used to generate 200 random causal 
pairs (Test 1, Test 2, …, and Test 200), and both the NC and GC methods 
are examined. The GC test value is within the range of [0, +∞), for NC, 
the value locates in [0, 1], both are continuous numbers. These GC and 
NC values could be compared after the Min-Max normalization method. 
In the strong group (Fig. 3A), explicit causal impacts can be detected in 
both methods for most scenarios (Test 1, Test 50, and Test 100, areas 
filled in green, namely results match the simulation model), while for 
specific random simulations (e.g., Test 200), Granger causality turns to a 
contrary result that opposite causal impact from Y to X is exhibited 
(Wrong conclusions, areas filled in red. From the simulation models, X is 
an independent variable that only affected by itself past values). The 
performance of the GC method deteriorates as the lag increases. For the 
weak situation (Fig. 3B), an incorrect causal relationship under the GC 
method appears across the entire range of lag values (Test 1 and Test 200 
in the early stage, Test 50 and Test 100 in the middle stage, Test 1, and 
Test 100 in the late stage). Furthermore, the NC method exhibits higher 
causal sensitivity compared to the GC method, as demonstrated by the 
larger area between the lines representing causality from X to Y and 
from Y to X. 

In the in-vivo fMRI BOLD signal experiments, 1,893 directional 
causality matrices representing the efficiency in brain functional net-
works are calculated first. Each matrix is composed of 129,600 (360 ×
360) causality values detected in fMRI BOLD signals between brain Area 
(i) and Area(j), where Area(i) and Area(j) locate in the regions of HCP 
MMP 360 cerebral cortex parcellation. Followed by a Kruskal-Wallis’s 
test, nearly three-quarters of causality values are excluded due to their 
statistical insignificance during the difference detection among the four 
classes. Only 32,974 directional causal values in the NC method and 
28,084 in GC exhibit significant differences in distinguishing cognitive 
impairment and AD patients. To further clarify the specific causal dif-
ference through multiple comparisons, a posthoc pairwise test with p- 
value adjusted (Benjamini/Hochberg method) is carried out. Those 
significant four-class sensitive causal values are counted and listed in 
Table 2. By counting the significant causal impacts between brain areas 
using both the NC and GC methods, a larger number of brain functional 
causal relationships could be seen in the HC and EMCI groups compared 
to those in the LMCI and AD groups. This suggests a significant 

Fig. 1. Work flow in this study.  
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Fig. 2. Simulation of causal impacted fMRI BOLD signal. (A1-E1) the independent time series X, and (A2-E2) the causality impacted Y series.  
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difference in brain functionality among the EMCI, LMCI, AD, and HC 
groups. The strength of the causality relationship between different re-
gions of the healthy brain is much stronger than that of a severely 
impaired cognitive brain. 

Next, Fig. 4 illustrates the performance of machine learning models 
which are trained with those significant causality values derived from 
the NC method (in solid green) and the GC (in dotted orange). According 
to the results in Table 2, four groups of candidate features are initialized 
for the six pairwise classifications. Namely, the 839, 1346, 20, and 100 
values are used as inputs for model training in (HC vs. EMCI), (HC vs. 
LMCI), (HC vs. AD), (EMCI vs. LMCI), (EMCI vs. AD), and (LMCI vs. AD) 
classification. For comparison, the 762, 944, 23, and 138 GC values are 
also trained in models. Thus, performances of HC, EMCI, AD, and LMCI 
features are shown in Fig. 4 (A–D). Among the forty-eight (4 × 6, for NC 
and GC) groups, causality features calculated by the NC method 
generally perform better in machine learning than those by GC. The 
highest acc scores in the pairwise classifications are drawn in Fig. 4E, 
from which it can be observed that the model trained with AD-related 
features achieves the best discrimination. Fig. 5 shows the confusion 
matrix with AD-related features calculated by NC and GC methods. The 
NC method exhibits better classification capability, as demonstrated by 
the larger number of true-positive (TP) and true-negative (TN) pre-
dictions located on the main diagonal. 

To further analyze the topological characteristics of these causality 
influences in AD brains, the in-degree and out-degree statistics were 
carried out, and Fig. 6 shows the results. Principally, only AD-related 
features (100 values in NC, Table 2) those achieving the highest acc 
scores are presented here. Among the 100 directional causality in-
fluences, there are only two HCP MMP areas (L-MT and L-8Av) exhibit 
in-degree greater than or equal to 2. The rest causality links only occur 
once counting for in-degree. Regarding the out-degree, three areas L-7m, 
R-PCV, and R-MI have a causal influence on more than two other areas. 
Table 3 lists these causality relationships described in Fig. 6. 

4. Discussion 

Despite the superior spatial resolution of fMRI data, an indirect 
measure of neural firing brings lots of noise in BOLD signals which 
makes it difficult to achieve practical causality analysis [38]. Compared 
to GC, NC has been proven better in revealing the true causality in the 
EEG domain ascribing to its natural higher time resolution. To examine 
the performance of extending the NC definition to fMRI analysis, both 
strong and weak causality relationships were simulated by establishing 
the joint-regression models, and NC was further applied in the genera-
tion of brain effective network for cognitive impairment analysis in this 
study. 

4.1. Enhanced brain efficiency network for weak causal impact in fMRI 
data 

This is the first time that the NC method has been extended to the 
analysis of fMRI data. In general, the brain network can be measured by 
calculating correlation coefficients between BOLD signals. The direc-
tionless interaction is insufficient to explain the sophisticated causal 
flow among cortical functions. While the GC method is widely used in 
many domains, Hu et al. pointed out its theoretical and experimental 
flaws. This study provides further evidence that the NC method can 
reveal causal influences closer to the truth, particularly for weak impacts 
in fMRI data, as demonstrated by the simulation of both strong and weak 
causal relationships (Fig. 3B). The influence from X to Y is more distinct 
in NC causality, as evidenced by the significant gap between the upper 
solid curve (X → Y) and the bottom dotted curve (Y → X). Under GC 
causality, the gap is very narrow, and in some cases, the causality 

Fig. 3. Detection of strong (A) and weak (B) causal impact between two simulated fMRI BOLD signals.  

Table 2 
Counting of significant causal impact between areas after non-parametric sta-
tistics and post-hoc test.   

Difference Between P-value Total in NC Total in GC 

HC HC vs. EMCI ‘and’ 
<0.05 

839 762 
HC vs. LMCI 
HC vs. AD 

EMCI EMCI vs. HC ‘and’ 
<0.05 

1346 944 
EMCI vs. LMCI 
EMCI vs. AD 

LMCI LMCI vs. HC ‘and’ 
<0.05 

20 23 
LMCI vs. EMCI 
LMCI vs. AD 

AD AD vs. HC ‘and’ 
<0.05 

100 138 
AD vs. EMCI 
AD vs. LMCI  
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direction is completely inverted, as indicated by the red area. For the 
simulation of strong causal impact from X to Y (Fig. 3A), the vast ma-
jority of the causality influence can be accurately detected when the Lag 
is small. However, as the Lag increases, opposite causality conclusions 
may be drawn, suggesting that Y has a causal impact on X. The simu-
lation results indicate that integrating the NC method enhances the 
evaluation of brain efficiency networks in fMRI compared to the GC 
method. 

4.2. Enhanced directional causality analysis for cognitive impairment 

For in vivo fMRI analysis, BOLD signals from different stages of 
cognitive impairment and AD patients were preprocessed using the HCP 
MMP method, which provides the most fine-grained cortical parcella-
tion, and a size of 360 × 360 efficiency network was computed for each 
subject. Nearly three-quarters of the causality values in the network did 
not pass the significance test and were therefore excluded. Topological 
analysis was performed on the remaining directional causality re-
lationships. In Fig. 6 and Table 3, the inferior parietal cortex (L-IP0 
newly discovered, and L-IP2), the lateral temporal cortex (R-PHT), the 
temporo-parieto-occipital junction (R-TPOJ2 newly discovered), and 
the auditory association cortex (R-47L) exhibited a combined causal 
impact on L-8AV which locates in the dorsolateral prefrontal cortex 
(DLPFC) and was a newly discovered brain region in HCP MMP 2016. 
The posterior cingulate cortex (R-31a newly discovered), the primary 
somatosensory cortex (R-2), the dorsal stream visual cortex (R- IPS1), 
and the superior parietal cortex (R-AIP newly discovered) showed a 
combined causal impact on L-MT. Meanwhile, the posterior cingulate 
cortex (L-7m and R-PCV) and the middle insular area (R-MI) simulta-
neously causally impacted a great many cortical regions including the 
posterior cingulate cortex (L-31a newly discovered, L-23c, R-d23ab), the 
insular and frontal opercular cortex (L-52, R-FOP4 newly discovered), 
the anterior cingulate and medial prefrontal cortex (R-25), the early 
auditory cortex (L-RI, R-PBelt newly discovered), the dorsal stream vi-
sual cortex (R- IPS1), and the early visual cortex (R-V8). All these 
mentioned cortical areas have been broadly reported [39–41] as closely 

related to cognitive impairment in respect of wording memory, decision- 
making, and social cognition. Seven causality influence flows were 
found to pass through the middle insular area, regardless of whether it 
served as the in-degree or out-degree, highlighting its importance as a 
mandatory node in the efficiency network. It is consistent with previous 
studies [42,43] that the MI cortex plays a key role involved in con-
sciousness and functionality diversion in conjunction with the temporal, 
parietal, and frontal lobes. The integration of HCP MMP and NC methods 
allows for the identification of more delineated causality relationships, 
as demonstrated by these findings, compared to those obtained using the 
coarse brain definitions in Brodmann areas or the directionless, 
correlation-based functional brain network. 

4.3. Enhanced classification performance compared to GC in machine 
learning 

Granger causality-based feature engineering is commonly used in 
machine learning for the prediction of brain pathology patients 
[26,44,45]. For comparison, in Fig. 4 and Fig. 5, the four-group sensitive 
features were used to train different kinds of machine learning models. 
Of the 48 pairwise classifications, all accuracy tests using NC features 
showed superior performance compared to those using GC features. 
While both GC and NC AD-related features scored close to 0.78 in the 
comparison of healthy controls (HCs) and AD patients, the calculation of 
HC-related causality using NC (0.75) was able to distinguish between 
patients and the same group of healthy controls by 20 percentage points 
more than GC (0.55). A similar scenario could be observed in the curves 
of the EMCI vs. LMCI group tested by EMCI-related features that the 
accuracy in NC was 15 percent higher than those of GC. These results 
demonstrate that subtle alterations in the groups of healthy controls vs. 
EMCI, EMCI vs. LMCI, and LMCI vs. AD can be accurately captured by 
the NC method during model training. This finding confirms the results 
of the simulations, which showed that weak causality relationships 
could be more accurately revealed using NC than GC. The improved 
classification performance in machine learning is attributed to the 
enhanced definition of brain efficiency networks. 

Fig. 4. Performance of forty-eight pairwise classifications with four-sensitive groups of causality features. Features of (A) HC-related, (B) EMCI-related, (C) AD- 
related, and (D) LMCI-related. (E) The highest acc achieved in each pairwise classification. 
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4.4. Limitation 

There are several aspects that could be improved in future research. 
First, the causality values that failed the significance test caused a large 
number of zeros in the brain efficiency network, resulting in extremely 
sparse matrices. This could pose a considerable hindrance in subsequent 
machine learning, particularly for the weighting solving in SVM or deep 
learning. Although sparse features in the 360 × 360 matrix were 
transcoded with a one-hot strategy and compressed under a factoriza-
tion machine, we haven‘t achieved ideal binary classification accuracy 
as ideal as other studies [46] that prepare features with the directionless 
correlation matrix. The accuracy of 0.78 in AD classification may 
represent the true model performance due to our sufficient samples in 
training and testing while most studies [8,16,17] up-to-date only collect 
dozens or hundreds of AD-related samples in which accuracy exceeds 
0.90 may have resulted from overfitting. Nevertheless, directional in-
fluence flow measured by the NC method is crucial for efficient network 
analysis, especially important for those weak causal-oriented BOLD 
signals glutted with inevitable noise among brain areas. Second, only in/ 
out node degree was analyzed for each brain area in this study, while 
sophisticated topological analysis should be given that aspect of func-
tionality communication or centrality alteration is of extreme impor-
tance to deeply understand the working mechanism of the brain. 

5. Conclusion 

To demonstrate the superiority of the introduced NC method in the 

brain efficiency network, the simulation of BOLD signals was used to 
model different degrees of causality relationships. Causal impacts 
especially the weak ones could be sensitively detected through the NC 
compared with the GC method. Performances of the directional cau-
sality analysis and classification for the cognitive impairment were both 
enhanced. Current clinical diagnoses for neurological diseases still 
heavily rely on subjective psychological scales (e.g., CDR, MMSE, GDS, 
etc.) and morphological changes that are often observable through 
neuroimaging only in the late stages of dysfunction. Simultaneously 
accompanied by fMRI acquisition, the proposed method integrated with 
functional connectivity evaluation can be employed as an essential 
supplementary means for the identification of brain disorders especially 
in their early stage. Further experiments are needed to study the sta-
tistical characteristics under the NC definition. Such experiments could 
lead to improvements in clinical diagnostic accuracy for patients with 
cognitive impairments. 
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